Бернулли числа - Definition. Was ist Бернулли числа
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Бернулли числа - definition

Число Бернулли; Бернулли числа; Бернуллиевы числа
  • дзета-функции Римана]]
  • Написана в 1713 году

Бернулли числа         

специальная последовательность рациональных чисел, фигурирующая в различных вопросах математического анализа и теории чисел. Значения первых шести Б. ч.:

B1 = 1/6, B2 = 1/30, B3 = 1/42, B4 = 1/30,

B5 = 5/66, B6 = 691/2730.

В математическом анализе Б. ч. появляются как коэффициенты разложения некоторых элементарных функций в степенные ряды. Например:

К числу важнейших формул, в которых встречаются Б. ч., относится формула суммирования Эйлера - Маклорена (см. Конечных разностей исчисление). Через Б. ч. выражаются суммы многих рядов и значения несобственных интегралов. Б. ч. впервые появились в посмертной работе Я. Бернулли (1713) в связи с вычислением суммы одинаковых степеней натуральных чисел. Он доказал, что

Для Б. ч. известны рекуррентные формулы, позволяющие последовательно вычислять эти числа, а также явные формулы (имеющие довольно сложный вид).

Большой интерес представляют теоретико-числовые свойства Б. ч. Немецкий математик Э. Куммер в 1850 установил, что уравнение Ферма xp + ур = zp не решается в целых числах х, у, z, отличных от нуля, если простое число р > 2 не делит числителей Б. ч. B1, B2,...B (p - 3)/2. Нередко для обозначения Б. ч. вместо Bm пишут (-1) m - 1B2m (m = 1, 2...); кроме того, полагают

B0 = 1, B1 = - 1/2,

B3 = B5 = B7 =... = 0.

Лит.: Чистяков И. И., Бернуллиевые числа, М., 1895; Кудрявцев В. А., Суммирование степеней чисел натурального ряда и числа Бернулли, М.-Л., 1936; Уиттекер Э.-Т. и Ватсон Д.-Н., Курс современного анализа, пер. с англ., 2 изд., ч. 1, М., 1963; Landau Е., Vorlesungen über Zahlentheorie, Bd 3, N. Y., 1927.

С. Б. Стечкин.

Числа Бернулли         
Чи́сла Берну́лли — последовательность рациональных чисел B_0, B_1, B_2, \dots, впервые рассмотренная Якобом Бернулли в связи с вычислением суммы последовательных натуральных чисел, возведённых в одну и ту же степень:
Бернулли, Якоб         
  • right
  • right
ШВЕЙЦАРСКИЙ МАТЕМАТИК (1655—1705)
Якоб Бернулли; Бернулли Я.; Бернулли Якоб; Бернулли, Яков; Яков Бернулли
Я́коб Берну́лли (, 6 января 1655, Базель, — 16 августа 1705, Базель) — швейцарский . Один из основателей теории вероятностей и математического анализа. Старший брат Иоганна Бернулли, совместно с ним положил начало вариационному исчислению. Доказал частный случай закона больших чисел — теорему Бернулли. Профессор математики Базельского университета (с 1687 года). Иностранный член Парижской академии наук (1699) и Берлинской академии наук (1702).

Wikipedia

Числа Бернулли

Чи́сла Берну́лли — последовательность рациональных чисел B 0 , B 1 , B 2 , {\displaystyle B_{0},B_{1},B_{2},\dots } , впервые рассмотренная Якобом Бернулли в связи с вычислением суммы последовательных натуральных чисел, возведённых в одну и ту же степень:

n = 0 N 1 n k = 1 k + 1 s = 0 k ( k + 1 s ) B s N k + 1 s , {\displaystyle \sum _{n=0}^{N-1}n^{k}={\frac {1}{k+1}}\sum _{s=0}^{k}{\binom {k+1}{s}}B_{s}N^{k+1-s},}

где ( k + 1 s ) = ( k + 1 ) ! s ! ( k + 1 s ) ! {\displaystyle {\tbinom {k+1}{s}}={\tfrac {(k+1)!}{s!\cdot (k+1-s)!}}}  — биномиальный коэффициент.

Некоторые авторы указывают другие определения, однако в большинстве современных учебников даётся такое же определение, как и здесь. При этом B 1 = 1 2 {\displaystyle B_{1}=-{\tfrac {1}{2}}} . Часть авторов (например, трёхтомник Фихтенгольца) использует определение, которое отличается от этого только знаком B k {\displaystyle B_{k}} . Кроме того, так как за исключением B 1 {\displaystyle B_{1}} все числа Бернулли с нечётным номером равны 0, некоторые авторы используют обозначение « B n {\displaystyle B_{n}} » для B 2 n {\displaystyle B_{2n}} или | B 2 n | {\displaystyle |B_{2n}|} .